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Abstract
A perturbation theory based on inverse scattering theory is developed for the
coupled nonlinear Schrödinger equations. The theory finds useful application
to the study of pulse propagation down a birefringent optical fibre and is used
to examine features of the radiation field shed by a soliton pulse propagating
down the fibre. The radiation field is linked to the scattering data through
a transform pair which in the linear limit reduces to the forward and inverse
Fourier transform pair. A complementary approach, which is in total agreement
to these results, is also discussed.

PACS numbers: 02.30.Ik, 02.30.Uu, 42.25.Lc, 42.65.Tg, 42.81.Dp

1. Introduction

When an ultrashort pulse propagates down an anomalously dispersive birefringent optical
fibre, complex features develop which require explanation. The object of this paper is to
outline a formalism developed within the framework of inverse scattering theory based on
the Manakov system, which admits useful application to the study of many of these observed
features. One such feature is polarization mode dispersion (PMD) which is one of the most
important considerations in transmission systems. A second, the subject of this paper, concerns
the properties of the radiation field shed by the soliton pulse when birefringence is present in
the fibre.

The theory developed here is a direct extension of one previously published which has
application to the isotropic, i.e. nonbirefringent, case [1]. An earlier study on this problem [2]
is based on a perturbation theory obtained from a direct linearization of the Manakov equations.
This is a complementary approach to the one described here but is one which does not, we
contend, use the best mathematical framework; that is one based on inverse scattering theory
in which a ‘potential’ (the complex envelope of the optical pulse) and associated scattering
data are spectral transforms of one another; see equations (5) and (6). In addition, the present
work completes the analysis presented in [3] where the adiabatic change of the vector soliton
parameters, in the presence of perturbation terms, was calculated.
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Ultrashort pulse propagation down an anomalously dispersive, birefringent optical fibre
is described by the vector nonlinear Schrödinger equation (VNLS)

iqx + iµσ3qt − qtt − 2q†qq = 0. (1)

Here, a suffix denotes a partial derivative, † denotes Hermitian conjugation and µ = O(ε)

is the ‘small’ birefringence parameter. Throughout bold letters denote column vectors, so
that q = (q1, q2)

T. The roles of the independent variables x and t are such that ‘time’ x
is distance propagated by the pulse down the fibre, ‘spatial’ coordinate t is a retarded time
variable indicating position along the pulse, while σ3 is the Pauli matrix

σ3 =
(

1 0
0 −1

)
. (2)

Equation (1) is the lowest order nontrivial amplitude equation obtained from a multiple scales
analysis of Maxwell’s equations as appropriate to the fibre optic problem. Both dispersion
and nonlinearity are present, where the latter is the Kerr nonlinearity which corresponds to the
intensity dependence of the refractive index of the host medium. With µ set to zero the VNLS
equation is known to be integrable using the techniques of inverse scattering theory [4]. In
particular, it has the single soliton solution

q ≡ qs = qs

(
cos θ

sin θ

)
(3)

where (scalar) qs is defined by

qs = 2η1 exp
(−2iξ1t + 4i

(
ξ2

1 − η2
1

)
x
)

sech(2η1(t − 4ξ1x)). (4)

The solution (3) is hereafter denoted as qs , the vector soliton. The parameters ξ1, η1,
characterize the soliton, while θ is the projection angle of the pulse onto each (linear)
polarization mode. Permitting µ to be nonzero will modify the solution (3) in several
distinct ways; these include possible changes in the solitonic parameters ξ1 and η1, the
generation of a soliton shadow and the generation of a radiation field in each polarization
mode. In this paper we will only be interested in the generation of the radiation field. Indeed,
perturbations invariably generate a background radiation field, which is superimposed on the
soliton pulse. In a strongly birefringent fibre, the radiation will emanate from the soliton at
different characteristic speeds in the two polarization modes.

The main results of this paper are divided into two sections. In section 2 we use results
from perturbation theory on the Manakov system to derive a nonlinear transform which links
the scattering data and the radiation field. In section 3 a complementary approach is introduced,
which makes use of the fact that the complex envelope of the radiation field and the scattering
data are spectral transforms of one another. A simple transformation is first used to remove
the birefringence term from equation (1), effectively changing an input soliton profile qs (0, t),
equation (3), into a mixture of soliton and radiation: all features of birefringence within the
fibre are now transformed to a set of suitable initial conditions. The two approaches discussed,
respectively, in sections 2 and 3 complement one another in the following sense: the method
described in section 2 is best for a study of the initial evolution of the radiation field, while
that in section 3 is best suited to describe the asymptote field.

2. The transform pair

As for a similar study of the scalar problem [1], the advantages of using a natural mathematical
framework based on inverse scattering theory is emphasized. The spectral transform is a
mapping from a potential q(x, t) into a set of scattering data Sij (x, ζ ), i, j = 1, 2, 3, where ζ
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is an eigenparameter. The inverse transform permits construction of the ‘potential’ q from a
limited set of the data Sij , namely [5]

Sij =
∫ +∞

−∞
φ(j) ∧ ψ̂(i)

(
q

−q∗

)
dt (5)

with an inverse(
q

−q∗

)
= 1

π

∫
C

(
S21

S11
ψ(2) ∨ ψ̂(1) +

S31

S11
ψ(3) ∨ ψ̂(1)

)
dζ

− 1

π

∫
C̄

(
�21

�11
ψ(1) ∨ ψ̂(2) +

�31

�11
ψ(1) ∨ ψ̂(3)

)
dζ. (6)

Here, φ(i) ∧ ψ̂(j) and ψ(i) ∨ ψ̂(j) are four component row and column vectors, respectively,
whose components are made of products between Jost function components for the forward
and adjoint scattering problems. Namely φ(i) ∧ ψ̂(j) = (

φ
(i)
2 ψ̂

(j)

1 , φ
(i)
3 ψ̂

(j)

1 , φ
(i)
1 ψ̂

(j)

2 , φ
(i)
1 ψ̂

(j)

3

)
and ψ(i) ∨ ψ̂(j) = (

ψ
(i)

1 ψ̂
(j)

2 , ψ
(i)

1 ψ̂
(j)

3 ,−ψ
(i)

2 ψ̂
(j)

1 ,−ψ
(i)

3 ψ̂
(j)

1

)T
. Specific forms for those

components are quoted in the appendix. The quantities �ij are cofactors of the matrix
elements Sij , while C(C̄) is a contour running from −∞+ iε (−∞− iε) to +∞+ iε (+∞− iε)
passing above (below) all zeros of S11 (�11) ; see [5] for further details.

We will consider equation (1) in the form

iqx − qtt − 2q†qq = iF (7)

where F = −µσ3qt . The scattering data, Sij , evolve according to equation [5]

Sij,x = S
(0)
ij,x +

∫ +∞

−∞
φ(j) ∧ ψ(i)

(
F

−F ∗

)
dt (8)

where S
(0)
ij,x represents the evolution of Sij for the unperturbed system. In particular,

S
(0)

i1,x = −4iζ 2S
(0)

i1 , i = 2, 3, while S
(0)

11,x = 0. We are interested in the case when a single
soliton qs accompanied by radiation is present in the fibre; then, we write

q(x, t) = qs(x, t) + δq(x, t) (9)

where δq = (δq1, δq2)
T. On substituting in equations (5) and (6) we obtain the transform pair

linking the scattering data and the radiation field, namely(
δq1

δq2

)
= 1

π

∫ +∞

−∞

(
S21

S11

(
ψ

(2)
1 ψ̂

(1)
2

ψ
(2)

1 ψ̂
(1)

3

)
+

S31

S11

(
ψ

(3)
1 ψ̂

(1)
2

ψ
(3)

1 ψ̂
(1)

3

))
dξ

− 1

π

∫ +∞

−∞

(
�21

�11

(
ψ

(1)
1 ψ̂

(2)
2

ψ
(1)
1 ψ̂

(2)
3

)
+

�31

�11

(
ψ

(1)
1 ψ̂

(3)
2

ψ
(1)
1 ψ̂

(3)
3

))
dξ (10)

and

Sij =
∫ +∞

−∞
φ(j) ∧ ψ̂(i)

(
δq

−δq∗

)
dt (i, j) = (2, 1), (3, 1). (11)

If the input pulse to the fibre is the soliton qs (0, t) then the initial condition for Sij (0, ζ ) is
Sij = 0, i �= j . Further, if the perturbing term F is dispersive, and small, O(ε) say, the
change in the soliton parameters ξ1(x) and η1(x) is O(ε2), which are ignored here since the
perturbation theory to be developed is first order, O(ε). In the absence of F , Sij , i �= j would
remain zero for all x; with the perturbation present we obtain O(ε) expressions for Sij , i �= j ,
which are valid for distances x up to εx � 1.

Note that equations (10) and (11) are the direct extension of the application of the Fourier
transform to linear systems, as appropriate to the integrable VNLS equation. Indeed, in the
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limit where the pulse q(x, t) has no soliton component and simply represents a weak radiation
field, δq(x, t) say, these reduce to(

S21

S31

)
= −

∫ +∞

−∞

(
δq∗

1

δq∗
2

)
exp(−iωt) dt (12)

(
δq∗

1

δq∗
2

)
= − 1

2π

∫ +∞

−∞

(
S21

S31

)
exp(iωt) dt (13)

where * denotes complex conjugation, and ω = 2ξ = 2Re{ζ }. Each component δq∗
1 , δq∗

2
of δq∗ is here linked to the one piece of scattering data, S21 and S31, respectively. This
simplifying feature is lost for the full (nonlinear) system.

Evaluating the integrals in equation (8) produces(
S21

S31

)
x

= −4iζ 2

(
S21

S31

)
− 2iζµ

(
S21

−S31

)
+ iµ sin(2θ)(ζ − iη1)

(
sin θ

−cos θ

)
q̂∗

s . (14)

We will let ζ = ξ to generate the continuum (radiation) field. Further, q̂∗
s is the conjugate of

the Fourier transform of the scalar soliton amplitude qs , namely

q̂s(x, ζ ) = π exp
(−4iη2

1x
)

sech(πζ/2η1). (15)

In the linearized problem, the vector (S21, S31)
T has the same polarization state as the pulse q̂s .

For the nonlinear problem equation (14) indicates that (S21, S31)
T is generated in a polarization

state which is orthogonal to q̂s ; this aspect will be discussed further below. This equation also
indicates that the inhomogeneous term vanishes whenever θ = 0 or π/2, as should be the case
since the vector problem then reduces to the scalar case in one or other polarization state with
soliton input, where no radiation is expected.

The term −2iζµ(S21,−S31) is precisely the additional term that is required to ensure that
S21 and S31 follow their respective characteristics. However, since Sij are O(µ) it follows
that this term in equation (14) is second order in the small parameter µ, and hence violates
our assumption of a first-order perturbation theory. We will ignore this inconsistency since
the equation has all the desired features for the generation of S21 and S31: the dispersive term
in the parameter ζ 2, the requirement that S21 and S31 evolve along separate characteristics
as appropriate for a birefringent fibre and more interestingly the fact that the radiation field
(or rather, the vector (S21, S31)

T) is generated in a polarization state that is orthogonal to the
polarization state of the soliton.

Once S21 and S31 are known, determination of δq1 and δq2 requires the further evaluation
of the integrals (10): we now show how the latter can be changed into a simpler algorithmic
step. The evolution of the spectral data is now governed by equation (14), subject to the initial
condition that S21(0, ξ) = S31(0, ξ) = 0. As for the scalar problem [1], it is useful to introduce
two quantities related to S21 and S31, namely, the associate fields f1(x, t) and f2(x, t). Define

f̂ 1(x, ξ) = S∗
21(x, ξ)

4ξ2 + 1
f̂ 2(x, ξ) = S∗

31(x, ξ)

4ξ2 + 1

where f̂ (x, ξ) ≡ F{f (x, t)} = ∫ +∞
−∞ exp(−2iξt)f (x, t) dt is the Fourier transforms of f(x, t).

Then, equation (14) becomes

−i

(
f̂ 1

f̂ 2

)
x

= 4ξ2

(
f̂ 1

f̂ 2

)
+ 2ξµ

(
f̂ 1

−f̂ 2

)
+

2µ sin(2θ)

2ξ + i

(
sin θ

−cos θ

)
q̂∗

s

or in t-space

−i

(
f1

f2

)
x

=
(

f1

f2

)
tt

+ iµ

(
f1

−f2

)
t

− iµ

2
sin(2θ)

(
sin θ

−cos θ

)
qs ⊗ h (16)
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where qs is the (scalar) soliton expression, equation (4),

h(t) =
{

exp(t) t < 0
0 t > 0

and ⊗ denotes convolution product. From equation (10), using solitonic expressions for ψ
(i)
j ,

and for S11(ξ) = (2ξ − i)/(2ξ + i) = �∗
11(ξ), and then evaluating the various integrals, the

following expressions are obtained for δq1 and δq2

−δq1 = (M − N sin2 θ)f1 + 1
2 sin(2θ)Nf2 − q2

s cos θ(f ∗
1 cos θ + f ∗

2 sin θ) (17a)

−δq2 = (M − N cos2 θ)f2 + 1
2 sin(2θ)Nf1 − q2

s sin θ(f ∗
2 sin θ + f ∗

1 cos θ). (17b)

To make these awkward expressions more manageable, we have introduced the operators

M = ∂2

∂t2
− 2 tanh t

∂

∂t
+ tanh2 t N = (1 − tanh t)

∂

∂t
+ tanh2 t − tanh t .

The algorithm for finding δq1 and δq2 is first to solve equations (16) for f1(x, t) and f2(x, t)

subject to the initial condition that f1(0, t) and f2(0, t) are both zero (so that the limitations
of the method derived in [1] do not apply here). This is now straightforward since both f1 and
f2 satisfy linear differential equations, and can be easily obtained using standard (Fourier)
transform methods. We find δq1 and δq2 simply by using equations (17). This is, again,
relatively straightforward requiring only differentiation of the known functions f1 and f2.

The qualitative features of equations (16) are straightforward: dispersive radiation is
generated, which then propagates along the characteristics x ± µt . Both these contribute to
the generation of both δq1 and δq2, in accordance with equations (17). Near the soliton, δq1

and δq2 have a complicated structure with no readily discernable features. Away from the
soliton—that is at large values of |t|—we expect the radiation field to evolve in accordance
with the linear theory: a predominance of δq1 should appear in the slow polarization mode,
δq2 in the fast, with each field propagating away from the (source) soliton pulse at a group
velocity determined by the frequency shifts δω = ±µ/2. At large values of |t|, the cross terms
proportional to q2

s can be ignored in equations (17), and we may approximate tanh t 	 ±1 as
appropriate. Then,

M 	
(

∂

∂t
∓ 1

)2

t → ±∞

while

N 	
{

0 t → ∞
2

(
∂
∂t

+ 1
)

t → −∞.

Hence, as t → +∞,(
δq1

δq2

)
	

(
∂2

∂t2
− 2

∂

∂t
+ 1

)(
f1

f2

)
(18)

and as t → −∞(
δq1

δq2

)
	

(
∂2

∂t2
+ 2

∂

∂t
+ 1

)(
f1

f2

)
+

(−sin θ

cos θ

)
2

(
∂

∂t
+ 1

)
f⊥. (19)

Here we have an interesting asymmetry with no ready explanation. For large values of the
parameter µ (let us assume, for the moment, that the perturbation theory continues to hold),
one expects f1 to dominate f2 as t → +∞, since the characteristic for f1 is t − µx, and
hence we expect δq1 to dominate δq2; this would be in accord with simple intuition. The
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same intuition—with f2 now dominating f1—fails at t → −∞ because of the presence
of f⊥ = −f1 sin θ + f2 cos θ in equation (19); here, now, (large) f2 will also contribute
to δq1. If the latter terms were missing, the other difference between equations (18) and
(19) can be explained in terms of the phase shift induced by the presence of the soliton
pulse, i.e. (∂t − 1)2/(∂t + 1)2 → (ω + i)2/(ω − i)2 in frequency space, which is the phase shift
experienced by a linear plane wave exp(iωt) on passing from t → +∞ to t → −∞ through
a soliton pulse [6].

3. Removal of the birefringence term

We now describe a complementary approach to that given in the previous section which makes
direct use of the spectral transform, equations (12) and (13). The model equation is now
the unperturbed VNLS and aspects of the radiation field appear in nonzero expressions for
S21(0, ξ), S31(0, ξ). The transformation

p = exp(−iµσ3t/2 − iµ2x/4)q (20)

removes the birefringent term from equation (1), producing the Manakov evolution equation
for p(x, t)

ipx − ptt − 2p†pp = 0. (21)

This has the soliton solution equation (3), which we temporarily denote as ps . The
corresponding soliton solution for q(x, t), which we denote as q

(µ)
s , is obtained by inverting

transformation (20), to yield

q(µ)
s (x, t) = exp(iµ2x/4)

(
exp(iµt/2) cos θ

exp(−iµt/2) sin θ

)
qs (22)

with scalar qs defined in equation (4). Note the spectral splitting of the two polarization
components of q(µ)

s , yielding peaks displaced from the origin at δω = ±µ/2. A soliton
pulse q

(µ)
s inserted into the birefringent fibre at x = 0 will continue to propagate as a soliton,

with no change to the structure other than that incorporated into the usual soliton phase shift
characterized by the leading exponential term in equation (22). In practice, it is rarely feasible
to tailor such input pulses; rather, a typical input is q

(µ=0)
s (0, t) ≡ qs(0, t). In consequence,

the soliton input to the fibre is now accompanied by a radiation field (we hereafter set 2η1 = 1),

δq(0, t) =
(

(1 − exp(iµt/2)) cos θ

(1 − exp(−iµt/2)) sin θ

)
sech t . (23)

This is now inserted into equation (11), together with the solitonic expressions for φ(1) ∧ ψ̂(i),
i = 1, 2 and the integrals evaluated to determine S21(0, ω), S31(0, ω): find(

S21(ω)

S31(ω)

)
= µ

4
sin(2θ)

(
q̂s(ω − µ/2)

ω − µ/2 + i
+

q̂s(ω + µ/2)

ω + µ/2 + i

) (−sin θ

cos θ

)

− 1

8
µ2q̂ ′′

s (ω)

(
cos θ

sin θ

)
+ h.o.t. (24)

where we have introduced ω = 2ξ, q̂s(ω) = sech(πω/2) is the Fourier transform of qs(0, t),
and ′′ denotes second derivative w.r.t. ω. Terms of order µ3 and higher have been neglected,
but no expansion has been made for q̂s(ω ± µ)/(ω ± µ + i). The structure of equation (24)
is interesting: the leading O(ε) contribution is polarized orthogonally to the soliton pulse.
The two distinct spectral functions have peaks at ω = ±µ/2; a simple (Fourier) interpretation
of this would suggest that radiation produced by each ‘source’ would then propagate with
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the correct group velocity along each characteristic. But of course, the kernels used in the
construction of δq1 and δq2 from S21 and S31 are not the simple Fourier kernels, but rather
the soliton expressions for the Jost functions that appear in the appendix, so care should be
taken with such an interpretation. What one might expect is that at large ‘distances’ from
the soliton pulse, i.e. at large values of |t|, a predominance of δq1 (the slow mode) should be
present for large positive values of t, while a predominance of δq2 should be present at large
negative values of t. It is not at all apparent how the information contained in equation (10)
with (24) accommodates this expectation. Interestingly, the Fourier transform of δq(0, t),
equation (23), projected onto the orthogonal polarization mode produces

δ̂q(0, ω) = 1
2 sin(2θ)(q̂(ω − µ/2) − q̂s(ω + µ/2)) (25)

which differs in structure from the same projection of (24) by the absence of the quantities
±µ/(ω ± µ + i). In a recent study of the scalar problem [1], we noted that the spectral
transform and Fourier transform of δq(0, t) were often proportional to one another; this
is obviously not the case here. Note further that the component of (S21(0, ω), S31(0, ω))T

polarized parallel to the soliton pulse is O(µ2).
Knowing S21(0, ω) and S31(0, ω), it is straightforward to deduce S21(x, ω) and S31(x, ω);

these are Si1(x, ω) = exp(−iω2x)Si1(0, ω), i = 1, 2. Reconstruction of δq1(x, t) and
δq2(x, t) then requires the substitution of Si1(x, ω) into equation (10), the substitutions
S11(x, ω) = (ω − i)/(ω + i) = �∗

11(x, ω), and an evaluation of the resulting integrals.

4. Final comments

In summary, we have developed a perturbation theory to analyse perturbed forms of the VNLS,
as appropriate to studies on pulse propagation down an anomalously dispersive, birefringent
optical fibre. The formalism is developed within the framework of inverse scattering theory
based on the Manakov system, which we believe to be the ‘best’ mathematical framework to
use. The formalism has been used to examine features of pulse propagation down a birefringent
fibre, in particular to examine features of the radiation field ‘shed’ by the soliton pulse.
Applications of this formalism have already been considered in a wide area of nonlinear optics
such as to the study of polarization mode dispersion [7], to cases of additional perturbations
such as higher order dispersion, and to the soliton shadow [8].

Appendix. The Jost functions

We will list here the components for the Jost functions ψ(i) and ψ(j), together with similar
components for the adjoint functions. The adjoint Jost functions are obtained from the
relationships φ̂

(i)

j (ζ, t) = φ
(i)

j (ζ, t)∗, and ψ̂
(i)

j (ζ, t) = ψ
(i)

j (ζ, t)∗, where * denotes complex
conjugate.

φ
(1)
1 = exp(−iζ t)

ζ + iη1
(ζ − iη1 tanh(2η1t))

φ
(1)
2 = − iη1

ζ + iη1
exp

(−iζ t + 4iη2
1x

)
sech(2η1t) cos θ

φ
(1)

3 = − iη1

ζ + iη1
exp

(−iζ t + 4iη2
1x

)
sech(2η1t) sin θ

φ
(2)

1 = − iη1

ζ − iη1
exp

(
iζ t − 4iη2

1x
)

sech(2η1t) cos θ
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φ
(2)

2 = exp(iζ t)

ζ − iη1
(ζ + iη1(cos2 θ tanh(2η1t) − sin2 θ))

φ
(2)
3 = iη1

ζ − iη1
exp(iζ t)(1 + tanh(2η1t)) sin θ cos θ

φ
(3)

1 = − iη1

ζ − iη1
exp

(
iζ t − 4iη2

1x
)

sech(2η1t) sin θ

φ
(3)
2 = iη1

ζ − iη1
exp(iζ t)(1 + tanh(2η1t)) sin θ cos θ

φ
(3)

3 = exp(iζ t)

ζ − iη1
(ζ + iη1(sin2 θ tanh(2η1t) − cos2 θ))

ψ
(1)
1 = exp(−iζ t)

ζ − iη1
(ζ − iη1 tanh(2η1t))

ψ
(1)

2 = − iη1

ζ − iη1
exp

(−iζ t + 4iη2
1x

)
sech(2η1t) cos θ

ψ
(1)
3 = − iη1

ζ − iη1
exp

(−iζ t + 4iη2
1x

)
sech(2η1t) sin θ

ψ
(2)

1 = − iη1

ζ + iη1
exp

(
iζ t − 4iη2

1x
)

sech(2η1t) cos θ

ψ
(2)
2 = exp(iζ t)

ζ + iη1
(ζ + iη1(cos2 θ tanh(2η1t) + sin2 θ))

ψ
(2)

3 = iη1

ζ + iη1
exp(iζ t)(−1 + tanh(2η1t)) sin θ cos θ

ψ
(3)
1 = − iη1

ζ + iη1
exp

(
iζ t − 4iη2

1x
)

sech(2η1t) sin θ

ψ
(3)

2 = iη1

ζ + iη1
exp(iζ t)(−1 + tanh(2η1t)) sin θ cos θ

ψ
(3)
3 = exp(iζ t)

ζ + iη1
(ζ + iη1(sin2 θ tanh(2η1t) + cos2 θ)).
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